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Abstract. Standard (bra-ket) Young operators for [n - 1, 11 of S, are expressed as tableau- 
permutation-separated bra and ket operators (ordered symmetrizer-antisymmetrizer pro- 
ducts with prescribed coefficient, bra and ket oppositely ordered for the same tableau, 
mutually convertible by the tilde (-) transformation reversing permutation group multipli- 
cation order). Non-diagonal operators are re-expressed as tableau-permutation-separated 
diagonal operators. [2 1"-'] operators are obtained by star (*) transformation, multiplying 
each permutation by its parity, interchanging associated symmetrizers and antisymmetriz- 
ers. Non-standard (ket-bra) operators are defined in a consistent manner and identified as 
linear combinations of standard operators. 

1. Introduction 

The Young operator expressions given in this paper on the one hand form part of a 
general programme leading to a Young operator derivation of the base-vector expan- 
sions given in the thesis of the first author (El-Sharkaway 1975) and on the other hand 
aim at a simplification of Young operator expansions previously published by the 
second author (Jahn 1960). These latter give the Young operators of S,  as linear 
combinations of two-sided products of Young operators of with the particular 
transposition Pn,n-l and would require a long chain calculation to reach a fully explicit 
expression (except in the case where the operators of Sn-l reduce to symmetrizers or 
antisymmetrizers characteristic of one-dimensional representations). This previous 
work was general and valid for any representation of S,,. In the present paper explicit 
expressions in terms of symmetrizers and antisymmetrizers are given for the two 
particular representations [n - 1, 13 and [2 ,"-*I of S,. It is the intention to extend this 
at least to the case of the so called 'single-hook' representations [n - k,.lk] and the 
'double row' representations [n - m, m] and thereby arrive at an independent deriva- 
tion of the expansions given by the first author (El-Sharkaway 1975). 

The standard text book on Young operators is still Rutherford's (Rutherford 1948) 
and an important relevant paper is that of McIntosh (McIntosh 1960). 

Young operators have application not only to many-body problems but also to 
tensor symmetrization problems connected with the continuous group representations. 

2. Young operators for the representation [ n - l , l ]  and its dual [2 l"-'] 

The ( n  - 1)' Young operators oib (a, b = 2 ,3 ,  . . . , n )  for the representation [n - 1, I] of 
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660 N G El-Sharkaway and H A  Jahn 

S,  in standard orthogonal form are required to satisfy 

Here the numerical label a is an abbreviation for the standard Young tableau label 

1 . . .  U .  . .  n - 1 2  . . .  a - l a + l . .  . n - l n  - a, = 
U U 

(2.4) 

where, following the first author's notation (El-Sharkaway 1975), U is used to denote 
the omission of a from 2 .  . . n.  The coefficient ( l / a )  occurs in (2.2) because the Young 
axial distance from a + 1 to a in the Young tableau (2.4) is +a. 

The (n  - 1)' Young operators 0,n.b' (a ,  b = 2,3 ,  . . . , n )  for the representation 
[ 2  l"-*] dual to [n - 1, 13 are required to satisfy 

o:*b*O:*d*= abcO:*d* (2.1)* 

Pa,a+lO:*b* = -( l /a)o:*b* + { ( a  - 1)1'2/a}O:a+l)*b* (2.2)" 

O:*b*Pb,b+l = - ( l /b)o:*b*+{(b'-  l) l 'z/b}o:*(b+l)*.  (2.3)* 

Here the starred numerical label a* is an abbreviation for the standard Young tableau 
label 

a , * = l a  * . . .  u . . . n = l a  * 2 . . . a - l a + l  . . .  n - l n  

= 1  a, 

a - 1  

a + l  

(2.4)* 

n 

where, using again the first author's notation (El-Sharkaway 1975) a star is employed to 
avoid the printing of a column. The coefficient - ( l / a )  occurs in (2.2)* because the 
Young axial distance from a + 1 to a in the Young tableau (2.4)* is -a. 

3. Symmetrizers and antisymmetrizers: the star transformation 

The symmetrizer 

(3.1) 
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is the Young operator for the totally symmetric representation [ n ]  of S,, and, being 
totally symmetric, satisfies 

s* L., = PSI ,.., = s1 ...flp (P in S,,) 

+s l...QSl...fl = Sl ... flSl...a (a s n).  (3.2) 

The antisymmetrizer 

Al.,.fl =( l /n! )  C epP (ep=f l , pa r i tyo fP)  
all n !P in  S, 

(3.1)* 

is the Young operator for the totally antisymmetric representation [ l"] dual to [ n ]  and, 
being totally antisymmetric, satisfies 

A1 . . .n  =+PA1 ... n =A1 ... n C P P  (ep = *l, parity of P, P in S,) 

=Ai, . .aA~, , .n  = A i  ... nA1 ... a (a s n) .  (3.2)* 

(3.1)*, (3.2)" are obtained from (3.1), (3.2) by what we call the star (*) transformation 
which multiplies each permutation P by its parity ep  and hence interchanges S and A 
throughout. 

If, with a slight generalization of notation, we write 

S l a  = ( I  + P1,)/2, Ala = U-P1a)/2, (3.3), (3.3)" 

so that we have 

Al..,a =A1 ...,A l a  = A d 1  ... a, 

si . A  = SlaSl ... a. ..n - Sl ... a. . . f lSla,  
- 

(3.4) 

(3.5) 
then the pair of relations 

A~ . . . a s~ . . . n  =SI  ... nA1 ... a = O = S I . , , ~ A I , , , ~  = A I  ... n S l  ... a (3.6), (3.6)* 

are a direct consequence of the basic pair 

AIaSIa = (I-P1a)(I+P1a)/4=0= ( I + P , , ) ( I - P , , ) / 4 = S l a A 1 , .  (3.7), (3.7)* 

4. Reduction of multiple symmetrizer-antisymmetrizer products: star, tilde and 
star-tilde transformations 

We show that the following set of four relations holds: 

Alas1 ... &..b = 2K/bb(AlaSl . . . d . . .  b ) ( A l n S l  ... d. . .b) ,  

SlaAl ... d.. .b = 2 K / b b ( S l n A l  ... d . . . b ) (S laAl . . . d . . . b ) ,  

Sl . . .d . . .bAla = 2K/bb(Sl ... a...6Ala)(Sl...d...6Ala), 

A l . . .u . . .bSla  = zK/bb  (A l...d...bSla)(A l. . .d. . .bSla).  

Here, in accordance with the notation 

K/,, = { (U  - l)(n - 1)/(un)}'l2 

(4.1) 

(4.1)* 

(XI) 
(rl)* 

(4.2) 
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for a numerical coefficient constantly occurring later, we have 

K / b b  = (6 - 1)/6. (4.3) 

We have already used a star (*) to designate the transformation which interchanges A 
and S throughout, equivalent to multiplying each permutation P by its parity ep. We 
now use a tilde (-) to designate the transformation which reverses the order of the S 
and A factors throughout on both sides of the equation, equivalent to a reversal in sense 
of permutation group multiplication. Since any algebraic identity involving sums and 
products of permutations will remain an identity when each permutation is multiplied 
by its parity and likewise remain an i d e n 3  w h e n c e  sense of group multiplication is 
reversed, we see that equations (4.1)*, (4.1) and (4.1)* obtained from (4.1) by means 
respectively of star, tilde and combined star-tilde transformations will have been 
proved when (4.1) is established. 

(4.1) may be rewritten as 

[ A l a s 1  ... d. . .b  -bI/{2(b - 1 ) } 1 ( A l a s l . . , a . . . b )  = 0. (4.4) 

Writing, from (3.1), 

sl ...i... b = { ( I + p l 2 + *  * *+pia+* * . + P l b ) / ( b - 1 ) } S Z . . . a . . . b ,  (4.5) 

commuting S2. . .d . . .6  with Ala, using (from (3.2)) 

s 2 . . . d . . . b S l . . . a . . , b  = Sl ... u...b, (4.6) 

writing, from (3.3)*, A l a  = ( I -  P1,)/2 and removing the common factor 1/{2(b - 1)) 
there remains 

There remains 

or, changing the overall sign, 

(4.11) 

Now (3.1)* is consistent with 
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5. Bra and ket tableau operators: tilde transforms of each other 

Bra and ket tableau operators are so defined that they are mutual tilde transforms of 
each other. Thus, for [n - 1, 13, with K,,, as in (4.2) and with a = 2 , 3 ,  . . . , n, the bra 
and ket tableau operators are defined to b e  respectively 

The corresponding operators for [2  ln-'] are obtained from the above by star transfor- 
mation : 

(5.1)* (aXI=(la * .  . . d . .  . n(=(a',*)=2K~,nAl,.,dS1aA1...6...n, 
la,*) = ( la  * . . . U .  . . n)  = (;,*I= 2K~anA1...~,,.nS1aA1,,,~. (G)* 

For the particular case a = n the expressions become symmetric with respect to tilde 
transformation so that, with 

(5.3), (53) 

We may put n = a in these expressions and obtain, with 

K/aa = (a - 1)/a, (5.4) 

the following special tableau operators for [a - 1, 13 and [2  la-*]: 

(aa I = (;..."I - - 1y) = Iaa)=(&l= lza)=2K/aaSl ... d A l a S l  ... d ,  ( 5 . 3 ,  (33) 

(5.5)*, (G)* 
(aZl=( la  * .  . . d J = l l a  * . . .  U)=(~,*)=(d,*l=(a"g)=2K/aaAi...dSiaAi...d . 

These special cases are considered again in the next section. 

6. Diagonal bra-ket and ket-bra operators 

Diagonal bra-ket and ket-bra operators are defined as simple products of the corres- 
ponding bra and ket operators. Included in our main theorem is the statement that 
standard diagonal Young operators are equal to corresponding diagonal bra-ket 
operators, whilst the non-standard diagonal ket-bra operators, whose expression 
simplifies, are in general linear combinations of both diagonal and non-diagonal 
standard Young operators. 
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Thus with K,,,,, KIaa as defined in (5.2), (5.4) we find from the equation set (5.1) for 
[n - 1,  13 and [2 ln-2] respectively 

(6.1) 

) 1 . . . u . .  . nl;. . . u . .  . n 
0:a = (an Ian> = 

= 4K/aaK/nnS1..A 1aSl . . x i . . .  n A  1oSl ... ci, 
o;*,*=(a:la,*)=(la * . . . u . ,  , n(1a * .  . . u . .  . n) 

= 4K/aaK/nnA1 ...cis 1 a A l  ..,ci,,, nSlaA1 . . . ~ .  (6.1)* 

Although the non-standard diagonal ket-bra operators are obtained from (6.  l ) ,  (6.1)* 
by a tilde transformation, it is to be noted that they are not obtained by direct tilde 
transformation of the final expressions (which are in fact invariant with respect to 
overall symmetrizer-antisymmetrizer order reversal): the transformation is carried out 
indirectly by action on the bra and ket parts separately. To emphasize that this 
operation in a sense cuts the o operator in half and reverses the two halves we use an x 
for the resulting non-standard diagonal ket-bra operator, writing, for [n - 1 ,  13, 

and by star transformation, for [2 ln-2], 

A consistent extension of these defiitions to the non-diagonal case is given later. 
We have already seen, in (5.3), (5.3), that the special limiting bra and ket of [n - 1,  11 

having a = n are identical; it follows that they commute and hence the bra-ket and 
ket-bra diagonal operators are equal also. We find in fact that the expression for the 
product reduces in such a way to make bra, ket, bra-ket and ket-bra all equal in this 
limiting case. Thus, for [n - 1 , 1 ] ,  - 

and, by star transformation, for [2 ln-*], 

(6.2), ( 6 3 )  

(6.2)*, (63)* 
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(6.3) 
(63) 

o i a =  (anlan)=(anlan>(anlan)= o:aoza= (anlxialan) (6.4) 

x:a= lan>(anl= lan>(anlan>(anl =xiax ia=  lan>oZ(anl (63) 

showing that and are idempotent. Similar relations are obtained for [2 by 
star transformation. Using the simpler expression (6.1)’ for xia  we have 

(anJxia=4K/anK/nnSl ...,iA 1aSl ... d...nAlaSl...d...n = 2K/anSl ...,A 1aSl ...*... n =(GI, (6.3)‘ 

which in effect proves the whole of (6.3) and the rest follow. In short: 

bra(nn’) is a right (left) -hand eigenstate of 
ketla,) 

(6.3)” 

with eigenvalue +1 in all cases. 
Putting n = a in (6.1), (6.1)’ and using (5.5) we find 

Oza=(aa(aa)= laa>(aal =xza=(aaI = Jaa)=2K/aaSr,,.dAlaSl...d. (6.5) 

Then from (5.1), (E)  we find 

eigenstate of oza. 
bra(an I is right-hand 

ketla,) is left-hand 
(6.7) 

Tilde transformation without change of operator product order leads to another result: 
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This result may be presented also as 

N G El-Sharkaway and H A  Jahn 

o&lan) = (an = Kn/aO;a.  (6.12) 

Similar results are obtainable, of course, for [2 ,"-'I by star transformation. 

7. Difference formula for the limiting operators 

We show that the limitingoperators 01" of [n - 1, 11 (see (6.2), (a)) may be expressed 
simply as the difference of two symmetrizers. We have 

8. Orthogonality of ket-bra symbols for [n- l , l ]  

Since, from (5 .  l), (G), 
I a n >  = 2K/anSl ... a...nAlnSl...a, 

( b n  I = 2K/bnS1 ... 6 A l b S l  ... b...n, 

we see that lan)(bn 1 involves the product 

Qab =Alas1 ... d S 1  ... 6 A i b .  

Now if a < b, we have, by (3.2), 

Sl ... $1 ... 6; = Sl ... 6, 

so that 

Q$',b,b)=AlaS1...6Alb =AlaSlaSl ... 6 A l b  = 0. 

On the other hand, if a > b, we have 

Sl ..AS 1...6 = Sl ... a, 

so that 

Q$'>~,)=~laSl...dAlb =Alas1 . . , i lSlbAlb = 0. 

(7.1) 

(7.2) 

(7.3) 

(7.3)* 
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9. Tableau permutations for [ n - l , l ]  

We denote the permutation which converts the limiting tableau 

1 2 . .  . a  -1 a a + l  . . . n -2  n - 1  
n 

nn = 

into the general tableau 

1 2 . .  . a - 1  a + l a + 2 . .  . n - 1  n 
an = 

U 

by 

(anJPJnn) = P ( a , a + l , a + z  ,.... n - z , n - l , n )  

and the inverse permutation, converting an into nn by 

The permutation which converts 

l . . . t ; . . . n  1 . . .  u . . . n  
b U 

into an = bn = 

(9.1) 

(9.2) 

(9.3) 

(9.4) 

(9.5) 

This may be evaluated for the two cases a < b and a > b as follows: 

I f a < b  

(9.6) 

(9.7) 

- -1  
p ( a . a  + 1 ,... n ) = P(a,a + 1 ,. . . ,b)P(b,b + 1 ,... ,n ) - p ( a , a  + 1 ,.. .,b ) p ( n , n  - l,.. . ,b ) >  

so that 

( a n  I p I b n ) ( a < b )  = P ( a , a + l  ...., b ) .  

I f a > b  
- p-1 

p ( n , n - 1  ,..., b )  = P ( n , n - l  , . . . , a ) P ( a , a - l , . . . , b )  - (a,a+l , . . . ,n)P(a ,a- l , . . . ,b ) ,  

so that 

( a n l p l b n ) ( a z b )  = p ( a , a - l  ,..., b ) .  
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It is easy to verify this directly from the form the tableaux a,, b, have in two cases: 

a < b  

1 2  . . .  a - l a a + l  . . .  6 - l b + l  . . .  n 
b f l =  b 

1 2  . . .  ~ - l ~ + l ~ + 2  . . .  b b + l  . . .  n 
a, = 

U 

(&lP/bn) = P ( a , a + l , a + 2  ,..., b- l ,b i .  

a > b  

(9.9) 

12 . . .  b-1 b . . . ~ - 2 ~ - l ~ + l . .  .II 
a, = 

U 

( a n  lPlbn) = P ( a , a - l , a - 2  ,..., b + l , b ) *  (9.10) 

10. Postulated expression for non-diagonal Young operators 

We postulate that the standard non-diagonal Young operators for the representation 
[n - 1, 11 in orthgonal form are given by the following bra operator-tableau 
permutation-ket operator product: 

o~b=(a,J(afl(PIbfl)IS,), ( a , b = 2 , 3  , . . . ,  n ) .  (10.1) 

Since (a, /PIU,) = I ,  the identity, this includes the already postulated diagonal case: 

By means of the following lemma we arrive at a new expression for the non-standard 
diagonal ket-bra operators .x:= which suggests a generalization to the non-standard 
non-diagonal case. 

(10.3) 

( l r 3 )  

where, in accordance with tilde transformation reversing permAtation group multiplica- 
tion order, the transformation which converts (10.3) into (10.3) reverses the order of 
the operators, replaces a permutation P by its inverse P-' and, as has already been 
explained, replaces each bra operator by its corresponding ket operator, each ket 
operator by its corresponding bra operator. 

Proof. From (6.2), (63) we have 

(6.2), (E) 
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Hence, noting particularly that transformation by a permutation, e.g. by 

P = P(a,a+l  ...., n )  - - 1  G , n -  1 ,  .... a), (10.4) 

leaves a numerical coefficient such as K,,, unaltered, 
-1 

P(a,a  + 1 ,._.. n ) ( n n  Inn )P(a ,a  + 1 ,.._, n )  

- 1  
- P ~ , n - l  ,_.., a ) ( n n I n n ) P ( n . n - l  ,..., a)= 2 ~ / n n S l  .., d . . . n A l a S l . . . d . . . n  = IanXanI, (10.5) 

by (6.1)', which establishes both (10.3) and (ly3). We see that(l0.5) expresses the 
non-standard diagonal ket-bra operator x : ~  associated with [ n  - 1, 11 as linear combi- 
nations of standard [ n  - 1, 13 Young operators obtained by simultaneous left- and 
right-handed application of permutations to the limiting operator oEn: 

x : a  = Ian)(% I = P(a,a+l  ,.... n ) O E n P ( n , n - l  ,.... a ) .  (10.6) 

This suggests immediately the following generalization: 

x : b  = P ( a , a  + l,.. .,n ) o : n P ( n , n  - 1,. . . , b ) *  

Accepting this new postulate, we find, using (10.3), ( 1 r 3 )  

(10.7) 

(10.8) 



670 N G El-Sharkaway and H A  Jahn 

By use of (6.9) we obtain from (10.8)' an expression for non-diagonal Young 
operators 0 : b  as the product of three diagonal operators separated by two permuta- 
tions: 

o : b =  ( ~ n ( ~ n > ( ~ n ~ ( ~ n ~ P ~ b n ) ( b , > ( b n ~ b n )  

(10.9) 

where 

K a b / n n  = K a / n K b / n  = [ab/{(a - 1(b - 1)}11'2{(n - 1)/n}* (10.10) 

By star transformation, the corresponding expressions for the non-diagonal Young 
operators o:*b' of [2 are 

(10.9)* b 
o : * b *  = K a b / n n O z * a  * P ( a , a  + I . . . . ,  n)O:*n  * p ( n , n  - 1  ,.... b ) o  b'b' 

= (aXl(anlPlbn)16,*>, (10.1)* 

(10.11) 

by definition of tableau permutations and dual tableaux. The star transform of (10.7) is 

x : * b *  = p ( a , a + l  ,..., n)o:*n*p(n ,n - l  ,..., b ) *  (10.7)* 

Since the permutation P acting on the right or left of the standard Young operators 
form normalized linear combinations of Young operators according to the orthogonal 
matrix representation [ n  - 1, 13 or [2 In-'], it follows that the ket-bra operators X i b ,  

x : * b *  (diagonal and non-diagonal) are normalized linear combinations of standard 
bra-ket Young operators. Thus, for example, for n = 3, the four ket-bra operators for 
the representation [2 13 are given by 

(10.12) x 3  - 3 
33 - 0 3 3 7  

(10.15) 

It is to be noted that the linear combinations, although normalized, are not orthogonal. 

cases a = n, b = n. Thus, using 
We note finally that the expression (10.1) for 0 : b  simplifies in the two special limiting 

(6.2), (E) 

(10.16) 
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11. Proof that the Young operators multiply correctly 
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12. Verification of the orthogonal matrix elements for a transposition 

In view of (11.4) it will be sufficient in establishing the standard orthogonal form (2.2), 
(2.3) of the representation [ n  - 1, 11 to show that 

Pa,a+lo:n = ( 1 / ~ ) o Z  +{ (a  '- 1)1/2/aIoz+l,n, 

o v a , ,  + 1 = (l /a )oL + { (a  - W 2 / a  I 4 . a  + 1. 

(12.1) 

(12.2) 

We have, from (10.17), 

o,", = (a,(P(a,a+l,a+2 (...( n)  = (aflI~a,a+lP(a+l,a+2 ,... ( n ) ,  

d + l , f l  = ( ( a  + l ) n l P ~ a + l , a + 2  ...., n ) .  

(12.3) 

(12.4) 

Hence, cancelling the common term P(a+l,a+2,...,n) on the right, (12.1) requires 

(12.5) 

(12.6) 

(12.7) 

(12.8) 

(12.9) 

(12.10) 
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it remains to show 

(12.13) 

(1 2.14) 

(1 2.16) 

Now, for r = 2,3 ,  . . . , a - 1, we have 

(Z-PlalplA ~ < o + ~ ) S ~ , . , ( o + l ) . . . n  

z= (I-f'la)PlrA I ( ~ + ~ ) P I S I , . . ( ~  41) ... n = ( ~ - ~ l a ) A r ( a + l ) S l . , , ( a + ~ ) , . . n ~  (12.17) 

Then since (for r = 2 ,3 ,  . . . , a - 1) 

PIaAr(a + 1)S1 ...( a 41 ) . . .n  - - A ( a  + 1)PlaS1 ...( a i 1) ... n - - Ar(a + I ) S ~  ...( a il)...n7 

it follows 

(1 2.18) 

(I - PI, )(P12 +Pi3 + * * * +P,,a-l)A 1(a+1)S1...(a+1).,,n = 0. (1 2.19) 

It remains to show, from (12.16), that 

(I-PIa -Pa ,a+l)Al(a+ljSl...(ail)...n = 0 ,  

A1 ,a,a+ 1Sl ... ( a i l )  . . .n = 0, 

Al,a,a+1AlaSlaS1 ... ( a i l )  ... n = 0, 

(12.20) 

(12.21) 

(12.22) 

or 

i.e. 

which is true and hence (12.1) is established. (12.2) is established in a similar manner. 
The starred relations 

+ 10 *, * = -( 1 / U  )O *,, * + { (U - 1) 1 / 2 / a } ~  + I)*" * (12.1)* 

(12.2)* O;*,*P, , ,+ 1 = -(l/a)o;*,* + { ( a  - 1)1/2/a}o:*(a+l)*, 

are established in a similar manner (with S and A interchanged throughout) with the 
minus sign in front of (l/a) being required because the final relation is 

(12.23) (I + P1a )SI (a + ,)A l...(a i 1) ... n - - -Pa,, + 1Sl(a + ,)A 1 ... (a i 1)...n7 

reducing to 

S1,a (a + 1)s 1aA 1aA 1 ... ( a i  1 ) . . .n  = 0, (12.24) 

which is true as before. Multiplication by on the right (for (12.1)*) or by o:*,* 
on the left (for (12.2)" with a replaced by b )  leads to the standard relations (2.2)*, (2.3)* 
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E t E 
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for [2 We note here that since the star transformation was defined to multiply 
each permutation by its parity and hence the transposition by - 1, we could have 
expected here a minus sign also before the second terms on the right, but Young’s 
standard convention, to which we adhere, makes these terms positive in all cases. (This 
is an arbitrary choice of phase which does not affect the orthogonality of the representa- 
tion.) 

13. Results in tabular form 

The results are presented in tables 1 and 2 .  
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